

Acoustics, Ultrasound and Vibration MWG9 / CCAUV

SPEAKER

TRIANTAFILLOS KOUKOULAS

National Research Council Canada (NRC)

Bogotá, Colombia | August 2024

Agenda

- 1. Metrology area domain
- 2. Historical evolution of measurements
- 3. Measurands, units and standards
- 4. Structure of the BIPM consultative committee
- 5. The SIM metrology working group perspective
- 6. Uncertainty budgets and traceability
- 7. Current technical challenges and future trends

Acoustics?...

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Acoustics?...

Copyright: Classic FM

Opera?...

Copyright: CNN
Loud concerts?...

Noise and nuisance?...

Copyright: Harvard Health

Ultrasound?...

• • • • • • • • • • • • • •

Ultrasound?...



Copyright: Wall Street Journal

Echo-location?...

Copyright: VanCity Physio

Copyright: Mayo Clinic Scans?...

Physiotherapy?...

Vibration?...

• • • • • • • • • • • • • •

Vibration?...

THE BEACH BOYS GOOD VIBRATIONS

Copyright: Capitol Records Music?...

Copyright: The New York Times Relaxation?...

(Non-cosmic) strings?...

Copyright: Science Photo Library

Infrasound?...

• • • • • • • • • • • • • •

Infrasound?...

Copyright: NASA JPL Earthquakes?...

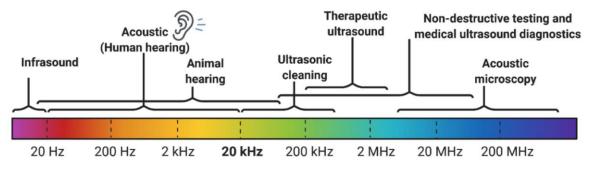
Tsunamis?...

Copyright: CBC News

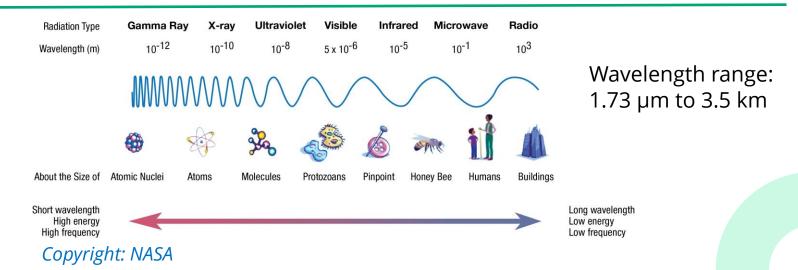
Infrasound?...

Copyright: National Geographic

Copyright: Planetary Society Meteors?...



"Listening"?...


Copyright: The Comprehensive Nuclear-Test-Ban Treaty Organization

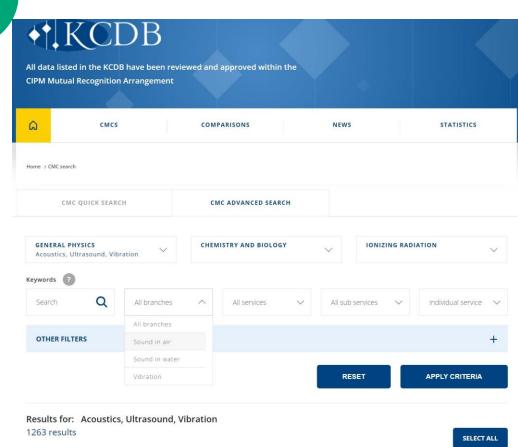
Metrology area domain

Sound and the electromagnetic spectrum

Pharmaceutics 2022, 14(10), 2231

International System of Units – SI

- 7 base units, traceable to 7 defined constants
- In acoustics, ultrasound and vibration, quantities are based on derived units combination of base units:
 - Pressure \rightarrow pascal (Pa)
 - Power \rightarrow watt (W)
 - Acceleration \rightarrow metre per second squared (m/s²)
 - dB \rightarrow log representation of pressure: level
- Device sensitivities are expressed linearly (output divided by quantity) or logarithmically (referenced to a value)
 - V / m/s² \rightarrow accelerometer sensitivity
 - dB reference 20 μ Pa \rightarrow microphone sensitivity


Copyright: BIPM

International Committee for Weights and Measures – CIPM

Consultative Committees of the CIPM

BIPM key comparison database – KCDB

- Acoustics, Ultrasound and Vibration: All 1263, SIM 340
- Electricity and Magnetism: All 4582, SIM 938
- Length: All 1680, SIM 331
- Mass and Related Quantities: All 2965, SIM 864
- Photometry and Radiometry: All 1558, SIM 331
- Thermometry: All 2984, SIM 633
- Time and Frequency: All 828, SIM 188
- Chemistry and Biology: All 6471, SIM 2380
- Ionizing Radiation: All 3668, SIM 1127

https://www.bipm.org/kcdb/

Historical evolution of measurements

• • • • • • • • • • • • • • •

Bronte and Astrape

Copyright: New Scientist

Copyright: Phys.org

- Known even at prehistoric times: light travels faster than sound
- You can see the light source; but where is the sound source?

Ancient Greece and Roman Empire

Epidaurus

Copyright: World History Encyclopedia

Colosseum

Copyright: National Geographic

- Theatre: Place for viewing
- Amphitheatre: Around place for viewing

Sound and acoustic(k)s

Copyright: The Cavendish Laboratory

- Sound has been a puzzle for centuries; even up to the 17th century, natural philosophers struggled devising ways of measuring its properties
- An anonymous author in the Philosophical Transactions of The Royal Society wrote:

"Hearing may be divided into direct, refracted, and reflexted, which are yet nameless unless we call them acousticks, diacousticks, and catacousticks."

 Calculus changed nearly everything: elasticities, densities, strings, propagation...all outlined in The Theory of Sound by Lord Rayleigh. THE-

JOHN WILLIAM STRUTT, BARON RAYLEIGH, Sc.D., F.R.S. HONORARY FELLOW OF TEINITY COLLEGE, CAMBRIDGE.

IN TWO VOLUMES

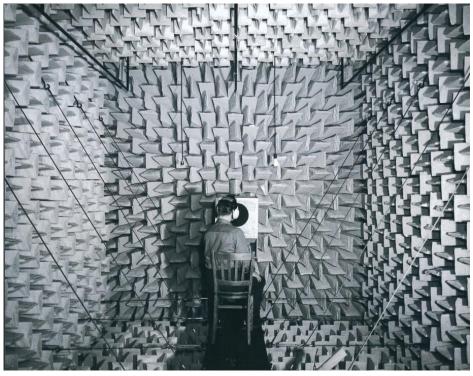
VOLUME 1. SECOND EDITION REVISED AND ENLARGED

> London: MACMILLAN AND CO. AND NEW YORK 1894 [All Bights reserved.]

Copyright: Biblioteca Europea Di Informazione E Cultura

Speed of sound

- Pierre Gassendi and Marin Mersènne used a pendulum to measure the time between the flash and sound arrival from exploding gunpowder: 448 m/s
- Gassendi also reached the conclusion that regardless of the source (high-pitched crack from musket or cannon ball), the time difference was the same: different pitches travel at the same speed
- Netwon used calculus to predict the speed of sound: **298 m/s**
- John Flamsteed and Edmond Halley measured the speed of sound and found that their value was 20% higher than Netwon's theoretical value.
- Who was right and who was wrong?
- Netwon's theory was without any flaw; Flamsteed and Halley accounted for everything in their measurements. This could only mean that:
 - Newton won on that occasion. But the challenge was far from over.


A history of speed measurements

Publication Date	Experimenter	Speed (English feet per second)	Publication Date	Experimenter	Speed (English feet per second)
1636	Mersenne	1036 ³	1708	Flamsteed, Halley	1142 11
1636	Mersenne	1470 4	1708	Derham	1142 11
1644	Roberval	600 5	1738	Cassini de Thury	1107 12
1666	Accademia del		1739	Cassini de Thury	1096 13
	Cimento	1148 6	1744	Blanconi	1043 14
1677	Cassini	1152 7	1745	La Condamine	1112 15
1685	Boyle	1200 8	1751	La Condamine	1175 16
1687	Newton	920-1085 9	1778	Kästner, Mayer	1106 17
1698	Walker	1305 10	1791	Müller	1109 18

Measurements of the Speed of Sound prior to 1800

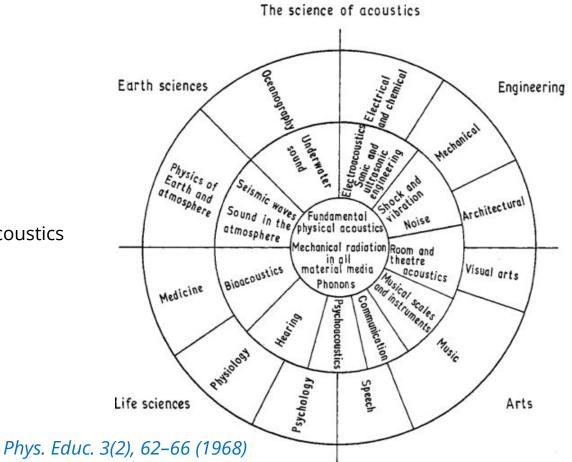
Laplace and The Speed of Sound, Bernard S. Fynn, 1964

- Values in table vary from 182.88 m/s to 448.06 m/s (1 foot = 0.3048 metres)
- Newton's value (280 m/s) assumed isothermal process
- Laplace based on adiabatic process, introduced correction to Newton's formula: 332 m/s (1089 feet/s)
- In 1738 the Academy of Sciences in Paris measured and published the speed of sound within 0.5% of the current accepted value

Fully anechoic chamber

Audiometric testing

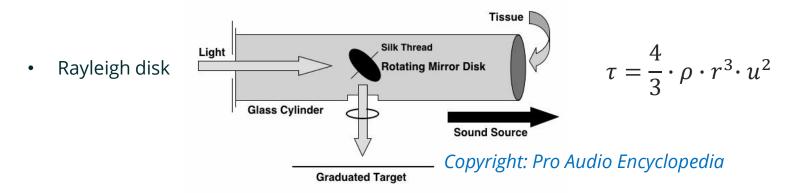
Copyright: National Research Council Canada, Metrology Research Centre



Visualizing and measuring flows

Microphone calibration

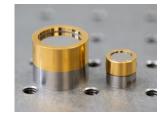
Copyright: National Research Council Canada, Metrology Research Centre


Lindsay's Wheel of Acoustics

SCIENCES OF THE EARTH AND OF ENGINEERING SCIENCES THE ATMOSPHERE mechanical companies, buildings, solid and fluid mechanica transportation (air, road, railway), seismology, geology, aircraft noise, engineering telecommunications. submarine communication. nuclear,... bathymetry, fishing,... chemical and the second physics of the Earth engineering. and of the aeromaterials and acoustics, atmosphere seismic waves. structures vibropropagation imaging. in the atmosphere acoustics ultrasonic non destructive electrical a engineering. evaluation and electronics testing oceanography civil engiunderwater sonorisation. fundamental acoustics. electro-acoustics neering and and applied sonar architecture acoustics. building, rooms, medicine entertainment, measurement. auditoria. comfort LK bioacoustics. signal, cells 14 imagin musical acoustics. physiology hearing. instruments phonation psychocommuniacoustics cation musics psychology speech noise quality, annovance, biomedicine, art, comfort, architecture, culture, town planning, noise pollution, society,... environment, noise pollution, telecommunications, ... LIFE AND HEALTH SCIENCES HUMAN AND SOCIAL SCIENCES

J. Acoust. Soc. Am. 151(2), 1093–1103 (2022)

Lindsay's Wheel of Acoustics (modernized)


Evolution of measurement devices

- Microphones: convert incident sound pressure to electrical signals
- dynamic (galvanometer), condenser (capacitive) and contact (piezoelectric)

Copyright: Samson

Copyright: National Research Council Canada

Copyright: Phase57

Evolution of measurement devices

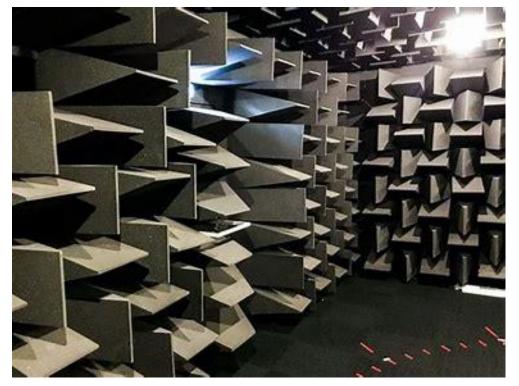
- Accelerometers: measure physical acceleration relative to freefall
- Piezoelectric, capacitive or piezoresistive

Copyright: Bruel & Kjaer

Copyright: Honeywell

Copyright: Endevco

- Hydrophones: convert incident pressure to electrical signal
- Piezoelectric type


Copyright: Teledyne

Copyright: S&V Samford Instruments Copyright: Onda Corporation

Measurands, units and standards

Acoustical chambers

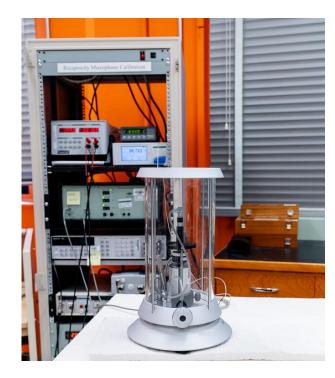
Hemi (left) and fully (right) anechoic chambers

Copyright: University of Derby

Copyright: National Research Council Canada

Acoustical chambers

Reverberation chamber (left) and listening room (right)



Copyright: Bose

Hak et al., Proceedings of 20th International Congress on Acoustics, ICA 2010

Ultrasound and vibration labs

Acoustics lab (left), ultrasound lab (centre) and vibration lab (right)

Copyright: National Research Council Canada

Acoustics

Quantity

- Pressure sensitivity
- Free-field sensitivity
- Sound pressure level
- System response level
- Electrostatic actuator response

Units

- dB (reference: 20 µPa)
- dB (reference: 1 V/Pa)
- dB (reference: sensitivity at 250 Hz)
- Degrees °

Copyright: Bruel & Kjaer

Devices under test

- Laboratory standard microphone
- Working standard microphone
- Sound level meter
- Sound calibrator (single or multi frequency)
- Audiometer, artificial ear
- Combined frequency range: 1 Hz 200 kHz

Methods

- Pressure field reciprocity
- Free field reciprocity
- Comparison

Copyright: National Research Council Canada

Standards - acoustics

- IEC 61094-1:2000 Measurement microphones Part 1: Specifications for laboratory standard microphones
- IEC 61094-4:1995 Measurement microphones Part 4: Specifications for working standard microphones
- IEC 61094-2:2009+AMD1:2022 CSV Electroacoustics Measurement microphones Part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique
- IEC 61094-3:2016 Electroacoustics Measurement microphones Part 3: Primary method for free-field calibration of laboratory standard microphones by the reciprocity technique
- IEC 61094-5:2016 Electroacoustics Measurement microphones Part 5: Methods for pressure calibration of working standard microphones by comparison
- IEC 61094-8:2012 Measurement microphones Part 8: Methods for determining the freefield sensitivity of working standard microphones by comparison
- IEC TS 61094-7:2006 Measurement microphones Part 7: Values for the difference between free-field and pressure sensitivity levels of laboratory standard microphones

Ultrasound and underwater acoustics

Quantity

• Ultrasonic power

Units

- mW
- W

Device under test

• Utrasonic source transducer: 0.5 MHz – 40 MHz

Methods

Radiation force balance

Copyright: National Research Council Canada

Quantity

-
- Free-field sensitivity

Units

- μV / Pa
- mV / Pa
- V / Pa

Device under test

• Hydrophone: 1 kHz – 20 MHz

Methods

- Three transducer spherical wave reciprocity
- Planar scanning technique
- Comparison method
- Laser interferometry

Copyright: National Institute of Metrology China

Standards – ultrasound

- IEC 62127-3:2022 Ultrasonics Hydrophones Part 3: Properties of hydrophones for ultrasonic fields
- IEC TR 61088:1991 Characteristics and measurements of ultrasonic piezoceramic transducers
- IEC 61828:2020 Ultrasonics Transducers Definitions and measurement methods regarding focusing for the transmitted fields
- IEC 62127-1:2022 Ultrasonics Hydrophones Part 1: Measurement and characterization of medical ultrasonic fields
- IEC 62127-2:2007+AMD1:2013+AMD2:2017 CSV Ultrasonics Hydrophones Part 2: Calibration for ultrasonic fields up to 40 MHz
- IEC 61161:2013 Ultrasonics Power measurement Radiation force balances and performance requirements

Ultrasound and underwater acoustics

Quantity

• Ultrasonic power

Units

- mW
- W

Device under test

• Utrasonic source transducer: 0.5 MHz – 40 MHz

Methods

Radiation force balance

Copyright: National Research Council Canada

Quantity

-
- Free-field sensitivity

Units

- μV / Pa
- mV / Pa
- V / Pa

Device under test

• Hydrophone: 1 kHz – 20 MHz

Methods

- Three transducer spherical wave reciprocity
- Planar scanning technique
- Comparison method
- Laser interferometry

Copyright: National Institute of Metrology China

Standards – underwater

- ISO 18405:2017 Underwater acoustics Terminology
- IEC 60500:2017 Underwater acoustics Hydrophones Properties of hydrophones in the frequency range 1 Hz to 500 kHz
- IEC 60565-1:2020 Underwater acoustics Hydrophones Calibration of hydrophones Part 1: Procedures for free-field calibration of hydrophones
- IEC 60565-2:2019 Underwater acoustics Hydrophones Calibration of hydrophones Part
 2: Procedures for low frequency pressure calibration

Vibration

Quantity

- Charge sensitivity
- Voltage sensitivity
- Acceleration

Units

- pC / m/s² and C / m/s²
- mV / m/s² and V / m/s²
- m/s²
- Degrees °

Copyright: National Research Council Canada

Devices under test

- Accelerometer
- Calibrator
- Acceleration measuring chain
- Combined frequency range: 0.5 Hz 20 kHz

Methods

- Laser interferometry (fringe counting, fringe disappearance and sine approximation)
- Shock excitation
- Comparison

Standards – vibration

- ISO 16063-1:1998 Methods for the calibration of vibration and shock transducers Part 1: Basic concepts
- ISO 16063-11:1999 Methods for the calibration of vibration and shock transducers Part 11: Primary vibration calibration by laser interferometry
- ISO 16063-13:2001 Methods for the calibration of vibration and shock transducers Part 13: Primary shock calibration using laser interferometry
- ISO 16063-21:2003 Methods for the calibration of vibration and shock transducers Part 21: Vibration calibration by comparison to a reference transducer
- ISO 16063-22:2005 Methods for the calibration of vibration and shock transducers Part 22: Shock calibration by comparison to a reference transducer
- ISO 16063-41:2011 Methods for the calibration of vibration and shock transducers Part 41: Calibration of laser vibrometers

Structure of the BIPM consultative committee

• • • • • • • • • • • • • • •

Consultative Committee for Acoustics, Ultrasound and Vibration

Board

- President: Dr. Gustavo P. Ripper INMETRO (Brazil)
- <u>Executive secretary</u>: Dr. Romain Coulon BIPM
- <u>Ex officio member</u>: Dr Martin .J.T. Milton BIPM, Director
- <u>Website</u>: https://www.bipm.org/en/committees/cc/ccauv

Liaisons

- Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)
- International Electrotechnical Commission (IEC)
- International Organization for Standardization (ISO)

CCAUV: mission and regional metrology organizations

Mission

• In addition to its formal work in the organization of key comparisons in acoustics, ultrasound and vibration measurements, the CCAUV acts as the focus for this diverse community, seeking to develop common aims and increased collaboration between national metrology institutes and appropriate designated organizations in Member States of the BIPM.

• RMOs:

CCAUV: structure

Members: 18

CENAM (Mexico) NIST (USA) DFM (Denmark) NMIA (Australia) GUM (Poland) NMIJ/AIST (Japan) INMETRO (Brazil) INRIM (Italy) NPL (UK) KRISS (Republic of Korea) NRC (Canada) LNE (France) PTB (Germany) METAS (Switzerland) UME (Turkey) NIM (China) VNIIM (Russia)

NMISA (South Africa)

Observers: 14

BEV (Austria) IPQ (Portugal) BIM (Bulgaria) KEBS (Kenya) CEM (Spain) NIS (Egypt) CMI (Czech Republic) NMC A*STAR (Singapore) CMS/ITRI (Taiwan) SE "NDI Systema" (Ukraine) CSIR/NPLI (India) SMU (Slovakia) INM (Romania) VNIIFTRI (Russia)

CCAUV Working Group for Key Comparisons

CCAUV-KCWG Members: 11

CENAM (Mexico) DFM (Denmark) GUM (Poland) LNE (France) NIST (USA) NIM (China) NMIA (Australia) NMIJ/AIST (Japan) NMISA (South Africa) NPL (UK) PTB (Germany)

- Identify the need and feasibility of CCAUV key and supplementary comparisons
- Review and approve technical protocols for comparisons that are intended to be used for the support of CMC claims
- Give advice on the analysis of KCs, calculation of KCRVs and linking procedures;
- Review and comment Draft B reports prior to their submission to the CCAUV for approval
- Contribute to the SPWG on matters of key comparisons
- Give advice in case of disagreement during a comparison

CCAUV Working Group for Regional Metrology Organizations Coordination

CCAUV-RMOWG Members: 6

KRISS (Republic of Korea) NIST (USA) NMISA (South Africa) SASO-NMCC (Saudi Arabia) UME (Turkey) VNIIFTRI (Russia)

- Keep RMO representatives abreast of relevant CCAUV developments
- Strengthen the cooperation between the RMOs
- Resolve inter-RMO CMC review obstacles
- Review the guidelines for CMC table entries
- Provide guidance on the range of CMCs supported by particular KCs and SCs
- Review the list of relevant service categories, in line with the stakeholder requirements
- Harmonize intra-RMO CMC review processes
- Maintain a technical assessor database

CCAUV Working Group on Strategic Planning

CCAUV-SPWG

Members: 10

CENAM (Mexico) INMETRO (Brazil) KRISS (Republic of Korea) LNE (France) NIM (China) NIST (USA) NMIJ/AIST (Japan) NMISA (South Africa) NRC (Canada) PTB (Germany)

- View on metrological requirements, the way these are driven by needs and the key technologies providing solutions to the challenges;
- Provide input into the CC Strategy Document as the basis for the strategic plan proposed to the CGPM
- Provide expert input and advice to the CC Strategy Document identifying future pilot studies and KCs
- Advise the CCAUV on optimal operational structure
- Share information on national priorities for emerging metrology helping NMIs to formulate improved metrological programmes;
- Identify areas suitable for collaboration
- Respond to developments within other CCs, including the future of the SI

CCAUV Task Group on Digitalization

CCAUV-TG-DIG Members: 6

CENAM (Mexico) DFM (Denmark) INMETRO (Brazil) NIM (China) NMISA (South Africa) NPL (UK)

- To support the development of the SI Reference Point and BIPM digital services in the field of AUV
- To support the activities of the CIPM Forum on Metrology and Digitalization in AUV

Key and supplementary comparisons

Structure

- Organization: CCAUV or Regional: SIM, APMP, etc.
- Sub-field: acoustics (A), ultrasound (U), vibration (V), underwater (W)
- Type: key or supplementary
- Identifier number: 1, 2, 1.1, etc.

Examples

- SIM.AUV.A-S2: calibration of sound pressure level
- APMP.AUV.U-K3: ultrasonic output power
- CCAUV.V-K2: vibration acceleration
- COOMET.AUV.W-S1: free-field hydrophone calibrations

Consultative Committee for Acoustics, Ultrasound and Vibration

The SIM metrology working group perspective

• • • • • • • • • • • • • • •

SIM Metrology Working Group 9 – acoustics, ultrasound and vibration

Board

- Chair: Dr. Akobuije Chijioke NIST (USA)
- <u>Vice-chair</u>: Dr. Andres Esteban Perez Matzumoto CENAM (Mexico)
- <u>Website</u>: https://sim-metrologia.org/about-us/structure/technical-committee/acousticsultrasound-and-vibration/

SIM MWG 9 Members: 8

CENAM (Mexico)INTI (Argentina)INACAL (Peru)LACOMET (Costa Rica)INM (Colombia)NIST (USA)INMETRO (Brazil)NRC (Canada)

SIM MWG 9 – mission and objectives

- Supports SIM and its member NMIs/DIs in meeting the obligations under the CIPM MRA in the field of acoustics, ultrasound, and vibration measurements
- Realizes the derived SI units and conducts research in calibration and measurement techniques as a foundation for metrology, which supports a wide range of customer needs
- Organizes regional KCs, SCs and pilot studies links these SIM activities to other RMOs and the CCAUV
- Facilitates cooperation in preparing, publishing, and maintaining calibration and measurement capability claims (CMCs) of member economies and of American laboratories new to international metrology
- Facilitates technical cooperation among its members and guests through meetings, workshops, and training opportunities at various NMIs/DIs
- Seeks harmonization among its members through sustainable networking and cooperation with other communities to promote and share advanced technology

SIM Metrology Working Group 9 – Acoustics, Ultrasound and Vibration

Uncertainty budgets and traceability

Uncertainty budget example: acoustics

Input quantity	Magn.		Source (distribution)	
Electrical transfer impedance				
Reference impedance: capacitance at 1 kHz	0.05	pF	Calibrated (<i>t</i> , 95 %, <i>k</i> = 2)	
Reference impedance: leakage resistance	0.1	GΩ	Estimated (Gauss., std uncertainty)	
Reference impedance: frequency dependence	23	μF/F	Estimated (Gauss., std uncertainty) [A18, p63]	
Voltage ratio: voltmeter	120	μV/V	Calculated (t, std uncertainty) [A14, p192-193]	
Voltage ratio: phasemeter	0.1	•	Manufacturer (rect., semi-range) [A10, p185]	
Voltage ratio: magnitude repeatability	150	μV/V	Measured (Gauss., std dev.) [A5, p167; A11, p156]	
Voltage ratio: phase repeatability	0.02	0	Measured (Gauss., std deviation) [A10, p184]	
Noise: cross-talk	0.0025	dB	Estimated (Gauss., std uncertainty)	
Noise: inherent noise	0.0001	dB	Estimated (Gauss., std uncertainty)	
Noise: distortion and harmonics	0.0001	dB	Estimated (Gauss., std uncertainty)	
Frequency of signal: tolerance	25	µHz/Hz	Measured (rect., semi-range)	
Ground shield: transmitter	0.0015	dB	Estimated (rect., semi-range)	Reciprocity –
Ground shield: receiver	0.0009	dB	Estimated (rect., semi-range)	
Acoustic transfer impedance				LS1P microphones
Static pressure: pressure indicator	5	Pa	Calibrated (t, 95 %, k = 2)	
Static pressure: spatial variation	8	Pa	Measured (rect., semi-range) [A9, p13]	
Static pressure: temporal variation	10	Pa	Measured (Gauss., 95 %, k = 2) [A9, p13]	
Temperature: calibration	0.006	°C	Calibrated (t, 95 %, k = 2)	
Temperature: indication error	0.002	°C	Measured (rect., semi-range) [A14, p190]	
Temperature: spatial variation	0.9	°C	Estimated (t, 95 %, k =2) [A9, p109]	
Temperature: temporal variation	0.03	°C	Measured (Gauss., 95 %, k = 2) [A9, p27]	
Relative humidity: calibration	2.0	%	Calibrated (<i>t</i> , 95 %, <i>k</i> =2) [A18, p39]	
Relative humidity: indication error	2	%	Measured (rect., semi-range) [A14, p191]	
Relative humidity: spatial variation	0.1	%	Measured (Gauss., std deviation) [A9, p20]	
Relative humidity: temporal variation	0.5	%	Measured (rect., semi-range) [A9, p18]	
Couplers: length	1.5	μm	Calibrated (t, 95 %, k = 2.1)	
Couplers: diameter	1.0	μm	Calibrated (t, 95 %, k = 2.1)	
Couplers: leakage	6.3·10 ⁻⁴	dB	Estimated (Gauss., std uncertainty) [A9, p177]	
Pressure radial non-uniformity	0	dB	Estimated (rect., semi-range)	
Polarizing voltage: tolerance	0.02	V	NRC tolerance (rect., semi-range)	
Polarizing voltage: electrometer	400	μV/V	Calibration (t, 95 %, k =2)	

Uncertainty budget example: acoustics

Input quantity	Magn.		Source (distribution)	
Polarizing voltage: effect at 250 Hz	0.01	dB/V	Manufacturer (rect., semi-range)	
Polarizing voltage: frequency	0	dB/V	Manufacturer (rect., semi-range)	
dependence of effect			50 10 17-0153	
Front cavity: depth	10	μm	Calibration (t, 95 %, $k = 2$)	
Front cavity: diameter	30	μm	IEC 61094-1 tolerance limits (rect., semi-range)	
Front volume	2.5	mm ³	Estimated from results (Gauss., std. uncertainty)	
Diaphragm equivalent volume	15	mm ³	[A10, p79] Estimated (Gauss., 95 %, <i>k</i> = 2)	
Diaphragm resonance frequency	0.52	kHz	Rasmussen, 2001 (Gauss., 95 %, $k = 2$)	
Loss factor of microphone	0.05	1	Estimated (Gauss., 95 %, $k = 2$)	
Diaphragm: effective diameter	0.1	mm	Estimated (Gauss., std uncertainty)	
Static pressure coeff.: unc.	0.0005	dB/kPa	Rasmussen, 2001 (Gauss., 95 %, k = 2)	
Static pressure coeff .: repeat.	5	%	Rasmussen, 2001 (Gauss., rel. std uncertainty)	
Temperature coeff.: unc.	0.0016	dB/°C	Rasmussen, 2001 (Gauss., 95 %, k = 2)	
Temperature coeff .: repeat.	5	%	Rasmussen, 2001 (Gauss., rel. std uncertainty)	
Influence of relative humidity	25·10 ⁻⁶	dB/%	Manufacturer (Gauss., std uncertainty)	
Speed of sound: equation	3.10-4	1	IEC 61094-2 (Gauss., rel. std uncertainty)	
Density: equation	2.2.10-5	1	IEC 61094-2 (Gauss., rel. std uncertainty)	
Ratio of specific heats: equation	3.2.10-4	1	IEC 61094-2 (Gauss., rel. std uncertainty)	
Effect of excess volume	0	dB	Estimated (rect., semi-range)	
Effect of viscous losses	0	dB	Estimated (Gauss., std uncertainty)	
Radial wave motion correction	0	dB	Estimated (Gauss., std uncertainty)	
Experiment				
Calculation error	0	dB	Validation (rect., semi-range) [A8, p83]	
Repeatability: magnitude	0.004	dB	Measured (Gauss., standard dev.) [A10, p109-110]	
Repeatability: phase	0.01	0	Measured (Gauss., standard dev.) [A11, p166]	
Rounding of results: magnitude	5·10 ⁻³	dB	Calculated (rect., semi-range)	
Rounding of results: phase	5·10 ⁻³	0	Calculated (rect., semi-range)	

Reciprocity – LS1P microphones

Uncertainty budget example: vibration

Component	Source	Estimated relative standard uncertainty (%)	Sensitivity coefficient	Degrees of freedom	Relative uncertainty contribution (%)	
u(û.)	Voltage measurement, due to calibration	0.0254	1	9	0.0254	
u(û _V)	Voltage measurement, drifting after calibration	0.0199	1	×	0.0199	
u(û _D)	Distortion	0.2887	1	12	0.2887	
u(û⊤)	Transverse etc acceleration	0.0007	1	10	0.0007	
u(ŝ _Q)	Displacement quantization	0.0036	-1	×	-0.0036	
u(ŝн)	Trigger hysteresis	0.0005	-1	~	-0.0005	
u(ŝ _λ)	Laser wavelength	0.0002	1	×	0.0002	
u(ŝ _N)	Refractive index	0.0002	1	8	0.0002	
u(ŝ _F)	Filtering effect	0.0000	-1	∞	0.0000	
u(ŝ _{VD})	Voltage disturbance	0.0000	-1	8	0.0000	
u(ŝ _{MD})	Motion disturbance	0.0577	-1	~	-0.0577	
u(ŝ _{PD})	Phase disturbance	0.0001	-1	ø	-0.0001	
u(ŝ _{RE})	Residual effects	-0.0001	-1	8	0.0001	
u(f _{FG})	Vibration frequency	0.0058	-2	∞	-0.0116	
u(S _{RE})	(S _{RE}) Repeatability		1	4	0.0241	
Relative combined uncertainty			50		0.297	
	nded uncertainty (<i>k</i> =2)				0.594	
Effective degre	es of freedom		42	5	14	

Primary low frequency sinusoidal calibration by laser interferometry

Uncertainty budget example: ultrasound

					Estimated contributions (%)		
			D. of		Power	Power	Power
Source	Description	Туре	f.	Distribution	0.5 W	1 W	5 W
	Electronic balance	В	00	Rectangular	0.28	0.17	0.07
Mass	Temperature	в	00	Rectangular	0.6	0.3	0.06
494045464774600	Suspension wires	В	00	Rectangular	0.0001	0.0001	0.0001
	Residual mass reading	В	00	Rectangular	0.6	0.3	0.14
1 Mar 10	Wong & Zhu's formula	В	00	Rectangular	0.001	0.001	0.001
Sound speed	Temperature & pressure	в	00	Normal	0.0095	0.0095	0.0095
	Temperature change	в	00	Rectangular	0.05	0.05	0.05
	Heating effects	в	00	Rectangular	0.004	0.004	0.004
	Pressure change	в	00	Rectangular	0.0001	0.0001	0.0001
	Nonzero salinity	в	00	Rectangular	0	0	0
	Fisher's formula	В	00	Rectangular	0.02	0.02	0.02
Water	Temperature	в	00	Rectangular	0.018	0.018	0.018
attenuation	Distance	В	00	Rectangular	0.01	0.01	0.01
	Frequency	В	00	Rectangular	0	0	0
	Reflection coefficient	В	00	Rectangular	0.4	0.4	0.4
Imperfect	Misalignment	в	00	Rectangular	1.6	1.6	1.6
target	Cone tip diffraction	в	00	Rectangular	0.5	0.5	0.5
1972) 1	Multiple reflection	В	00	Rectangular	1	1	1
Beam pattern	Practical limitation	В	00	Rectangular	1	1	1
Gravitation	NRC mass standard	В	00	Rectangular	0.001	0.001	0.001
Ultrasonic	Random Effect in						
power	Repeats	Α	4	Normal	2.2	0.9	0.9
Relative combined uncertainty (%)					2.631	1.602	1.584
Effective degrees of freedom				8	38	36	
Expanded uncertainty (%) (k=2.31, 2.02, 2.03)				6.079	3.237	3.219	

Calibration of ultrasonic transducers by the radiation force method

Traceability for acoustics

Areas of Metrology

Acoustics

• Measurement microphones

Frequency & TimeSine generator

Dimensional

• Plane wave couplers for LS1P and LS2P microphones

Electrical

- Insert-voltage microphone preamplifier
- Phasemeter
- Reciprocity apparatus
- Transmitter unit
- RMS voltmeter

Pressure

• Barometer

Temperature

- Digital Thermometer
- Humidity indicator

Traceability for ultrasound and vibration

Areas of Metrology

Ultrasound

• Reference transducer

Mass

- Electronic balance
- Standard weights

Electrical Standards

- RF RMS voltmeter
- RF power amplifier

Frequency & Time

• Sine generator

Pressure

Barometer

Temperature

Hygrometer


Areas of Metrology

Vibration

• Shaker

Electrical

- Photo Detector
- Amplifier
- Power amplifier
- RMS voltage
- Oscilloscope

Frequency & Time

- Function generator
- He-Ne laser
- Frequency counter

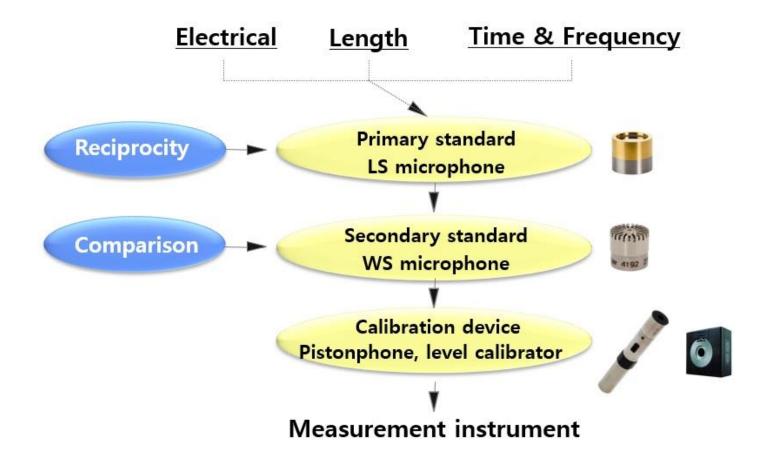
Pressure

• Barometer

Temperature

• Hygrometer

- All exclusively defined and traceable to combinations of fundamental constants
- This does not imply that derived units are also defined likewise
- Acoustics: artefact (microphones and couplers) and method (reciprocity) dB

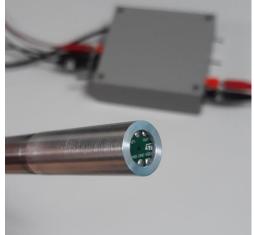


Copyright: Bruel & Kjaer

Copyright: BIPM

Traceability

Traceability

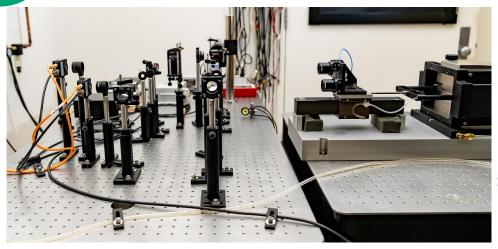

Copyright: Bruel & Kjaer

Copyright: Ono Sokki

Copyright: STMicroelectronics

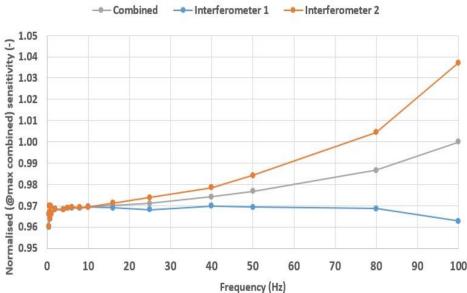
Copyright: National Institute of Metrological Research Italy

Reciprocity: past, current and future but very limited microphones coverage

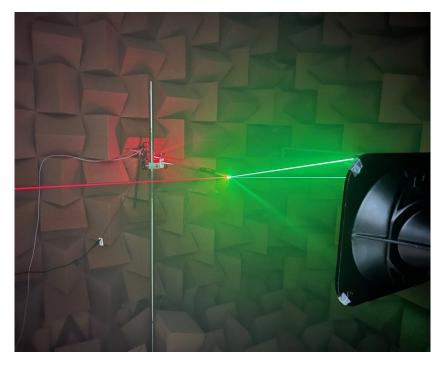

Free-field: pressure comparison and optical including laboratory standard microphones and MEMS

Current technical challenges and future trends

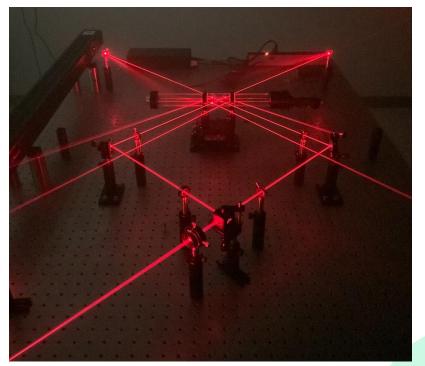
• • • • • • • • • • • • • • • •


Vibration

Homodyne Michelson interferometers and acceleration profiles



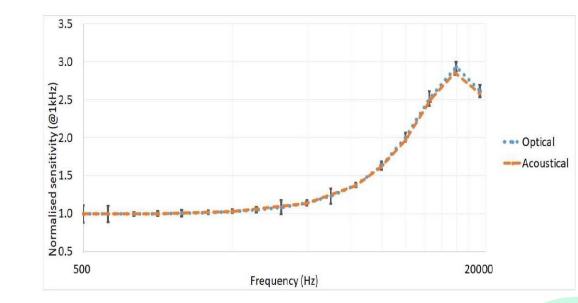
Copyright: National Research Council Canada



Acoustics

Optical realizations of the acoustic Pa and MEMS calibrations

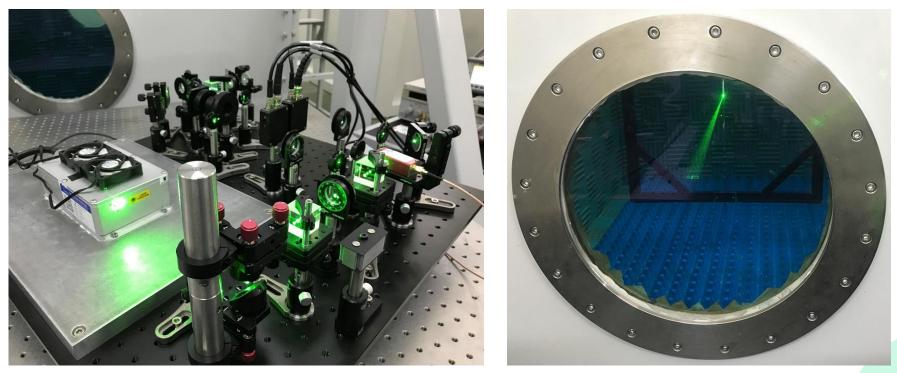

Copyright: Korea Research Institute of Standards and Science



Copyright: National Research Council Canada

Acoustics

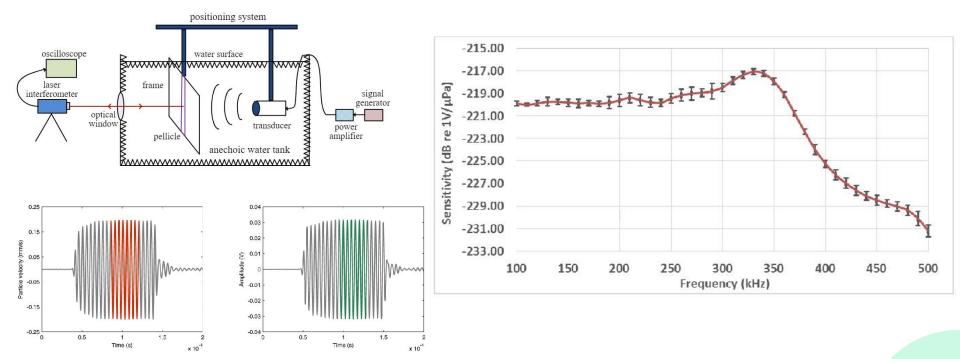
Optical realizations of the acoustic Pa and MEMS calibrations



Bouchard et al., Proceedings 28th International Research In Congress on Sound and Vibration 2022 Institute of

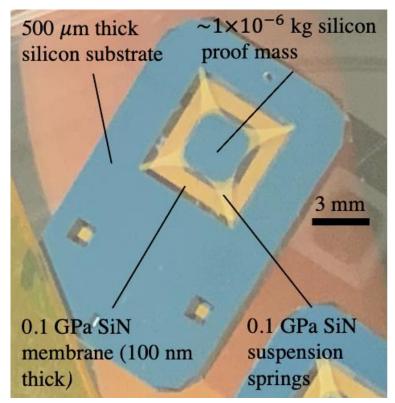
Copyright: National Research Council Canada, Korea Research Institute for Standards and Science, National Institute of Metrological Research Italy

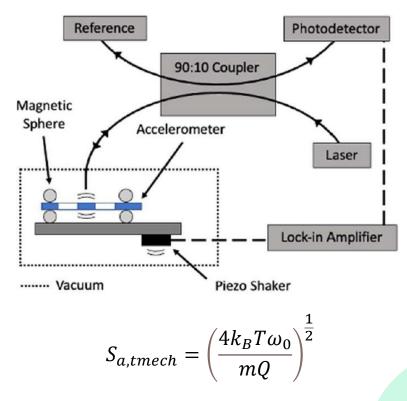
Underwater acoustics / ultrasound


Heterodyne interferometry for hydrophone calibrations

Copyright: National Metrology Institute China

Underwater acoustics / ultrasound

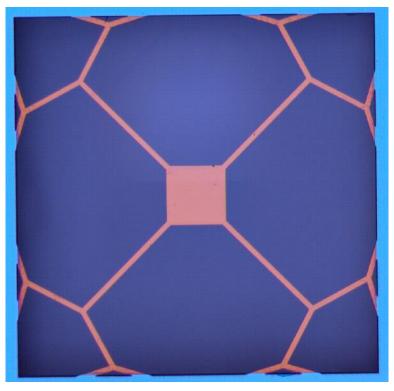

Heterodyne interferometry for hydrophone calibrations

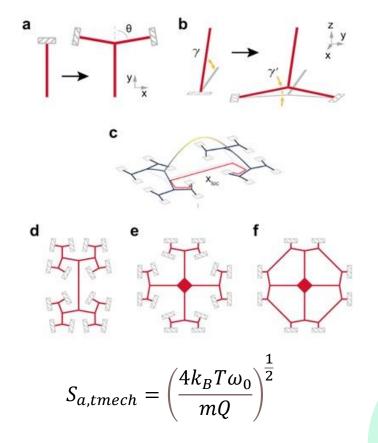


Wang et al., Proceedings 25th International Congress on Sound and Vibration, 2018

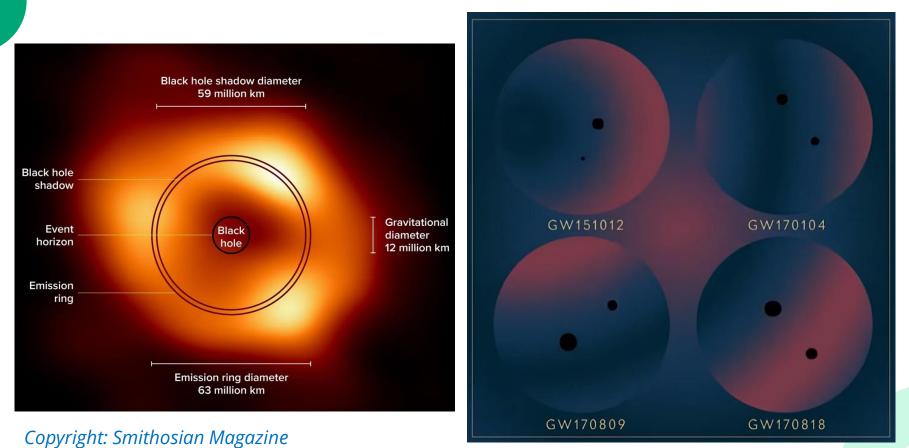
Vibration

Silicon Nitride mass-loaded MEMS accelerometers

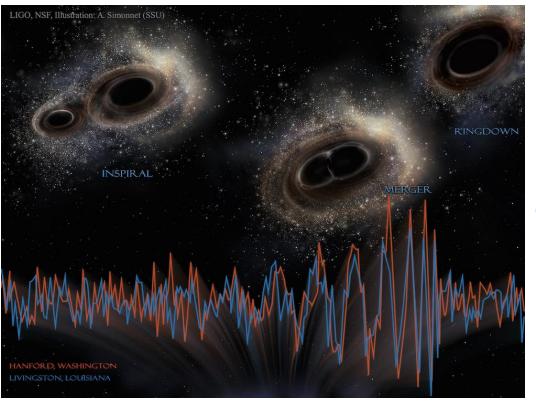



Hodges et al., Proceedings of 2022 IEEE International Symposium on Inertial Sensors and Systems, France

Vibration


Silicon Nitride non-mass-loaded MEMS accelerometers

Copyright: UOMEMS Lab, University Of Ottawa

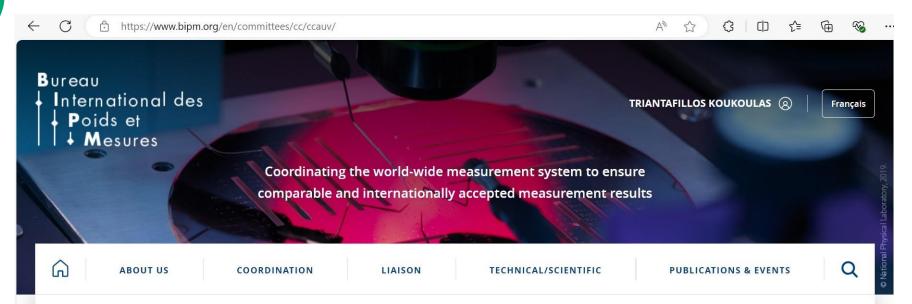


Black holes and mergers

Copyright: Scientific American

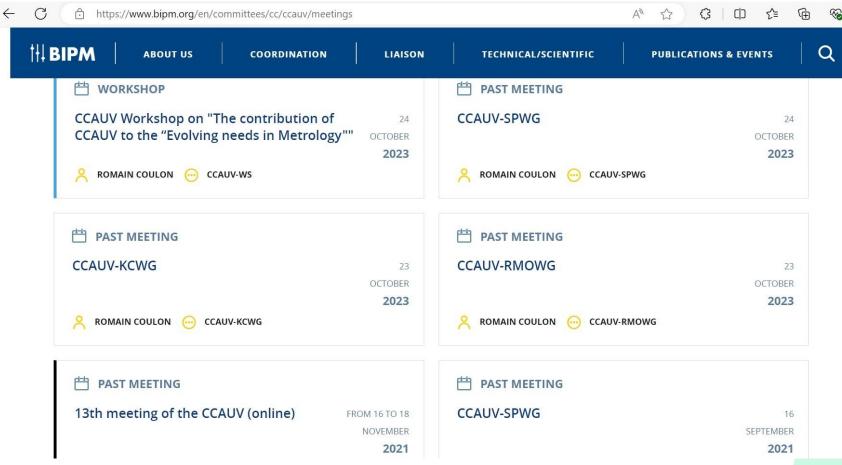
Black holes and mergers

Copyright: LIGO

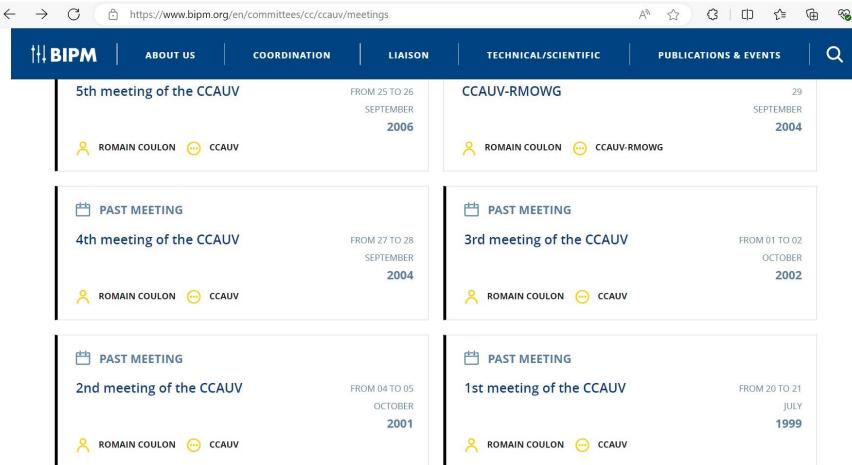

- The oscillations in the light signals received at the LIGO were within the human hearing range: light frequencies converted into sound frequencies
- The result (chirp) is the sound of the black holes colliding

Resources

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •



CCAUV BIPM resources



Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV)

CCAUV BIPM resources

CCAUV BIPM resources

SIM **METROLOGY SCHOOL**

Thanks!

Triantafillos Koukoulas

National Research Council Canada (NRC)

Triantafillos.Koukoulas@nrc-cnrc.gc.ca

Follow us on:

facebook.com/metrosim youtube.com/simmetrology7958 www.sim-metrología.org