

National Research Cons Council Canada reche

Conseil national de recherches Canada

MWG5: Time and Frequency Metrology

SPEAKER

Marina Gertsvolf National Research Council Canada (NRC)

Bogotá, Colombia | August 2024

MEASUREMENT OF TIME

Measurement of Time

5000 years ago:
Babylonians and Egyptians began to measure time
solar day
lunar month
solar year

Calendars

Aztec Calendar https://www.calendar.com/history-of-the-calendar/

https://en.wikipedia.org/wiki/List_of_calendars

89 calendars:

- Solar (52)
- Lunar (2)
- Fixed (9)
- Lunisolar (23)
- Seasonal (2)

Gregorian calendar	2024 MMEXIV
Ab urbe condita	2777
Armenian calendar	1473 ԹՎ ՌՆՅԳ
Assyrian calendar	6774
Bahá'i calendar	180-181
Balinese saka calendar	1945-1946
Bengali calendar	1431
Berber calendar	2974
British Regnal year	2 Cha. 3 - 3 Cha. 3
Buddhist calendar	2568
Burmese calendar	1386
Byzantine calendar	7532-7533
Chinese calendar	発卵≢ (Water Rabbil) 4721 or 4514 - to
	甲辰年 (Wood Dragon) 4722 or 4515
Coptic calendar	1740-1741
Discordian calendar	3190
Ethiopian calendar	2016-2017
Hebrew calendar	5784-5785
Hindu calendars	
- Vikram Samvat	2080-2081
- Shaka Samvat	1945-1946
- Kell Yuga	5124-5125
Holocene calendar	12024
Igbo calendar	1024-1025
Iranian calendar	1402-1403
Islamic calendar	1445-1446
Japanese calendar	Rehwa 6 (今和6年)
Javanese calendar	1957-1958
Juche calendar	113
Julian calendar	Gregorian minus 13 days
Korean calendar	4357
Minguo calendar	ROC 113 民國113年
Nanakshahi calendar	556
Thai solar calendar	2567
Tibetan calendar	開水党単 (female Water-Rabbit) 2150 or 1769 or 997 - たー 昭木龙年
	(male Wood-Dragon) 2151 or 1770 or 998
Unit: time	1704067200 - 1735689599

Measurement of Frequency

Pendulum clock:

- invented by Galileo in 16th century
- has two components:
 - regular natural process
 - counter

A book about John Harrison, an 18th-century clockmaker who created the first clock sufficiently accurate to be used to determine longitude at sea

Measurement of Time

-3000:

Babylonians and Egyptians began to measure time

- solar day
- Iunar month
- solar year

1960:

CGPM resolution 9 (1960):

The second is the fraction 1/31 556 925.9747 of the **tropical year** for 1900 January 0 at 12 hours ephemeris time.

1967:

CGPM resolution 1 (1967):

The second is the duration of 9 192 631 770 **periods of the radiation** corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

ATOMIC CLOCKS

SI second

CGPM resolution 9 (1960):

The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 12 hours ephemeris time.

CGPM resolution 1 (1967):

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

CGPM resolution 1 (2018):

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency Δv_{Cs} , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s⁻¹.


```
Essen & Parry (NPL, 1955)
```


Thermal beam Cs clock

Norman R. Ramsey

1989 Nobel Prize in Physics

or the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks

Cs beam clocks at NRC

NRC Cs-1 1950s-1960s

NRC Cs-3 1960s-1970s

NRC Cs-5 1970s-1980s

NRC Cs-6 1980s-1990s

Commercial Atomic Clocks

9 11

CLOCK DATA ANALYSIS

Time Metrology

- rise time
- ringing
- voltage level
- DC offset
- amplitude
- skewing
- distortion

Statistical Analysis of Clocks Data

- How to analyze the data?
- How to assign uncertainties?

Statistical Analysis of Clocks Data

Overlapping Allan Deviation: $\sigma_{y}(\tau) = \sqrt{\left\langle \frac{1}{2\tau^{2}} [x_{i+2} - 2x_{i+1} + x_{i}]^{2} \right\rangle} = \sqrt{\frac{1}{2} \left\langle \left(\overline{y}_{i+1} - \overline{y}_{i}\right)^{2} \right\rangle}$

Modified Allan Deviation:

mod
$$\sigma_y(\tau) = \sqrt{\frac{1}{2} \left(\left[\frac{1}{n} \sum_{i=0}^{n-1} \overline{y}_{i+n} - \overline{y}_i \right]^2 \right)}$$

x – phase difference [s]y – fractional frequency offset [s/s]

Allan Deviation

Standard uncertainty: $u_{c} = \sigma_{y}(\tau)$

Allan Deviation for different noise types

- Noise types defined based on characteristic Fourier frequency power law: $S_v \sim f^n$
- Allan Deviation (ADEV) power law: $\sigma_{\gamma} \sim \tau^{\alpha}$
- Modified Allan Deviation (MADEV) power law: $\sigma_y \sim \tau^b$

noise type	n	α	β
white phase, WP	2	-1	-3/2
flicker phase, FP	1	-1	-1
white frequency, WF	0	-1/2	-1/2
flicker frequency, FF	-1	0	0
frequency random walk, RWF	-2	1/2	1/2
frequency drift, DF	-3	1	1

Noise Types

19

Example

Comparative clocks performance

NATIONAL RESEARCH COUNCIL CANADA

COLD ATOMS CLOCKS

Thermal beam Cs clock

$$p_g = \frac{1}{2}(1 - \cos \Delta \varphi)$$
, $\Delta \varphi = \Delta \omega \Delta t$

Cs Fountain clock

Tannoudji

Steven Chu Wil

William D. Phillips

1997 Nobel Prize in Physics

for development of methods to cool and trap atoms with laser light

Laser cooling down to $T \sim 1 \mu K$

NRC Caesium Fountain Uncertainty budget

Effect	Uncertainty $[1 \times 10^{-16}]$	Uncertainty $[1 \times 10^{-16}]$
Zeeman effect	0.2	0.2
BBR	0.7	0.7
Gravitational redshift	0.03	0.03
Cold collisions	1.0	0.3
MW leakage	1.0	0.2
MW phase transients	0.8	0.5
DCP m=0	0.2	0.2
DCP m=1	1.3	1.0
DCP m=2	0.2	0.2
MW lensing	0.2	0.2
Total	2.3	1.4
year	2020	2023

NATIONAL RESEARCH COUNCIL CANADA

reported expected

S. Beattie, *et al*, *Metrologia* 57.3 (2020) S. Beattie, *et al*, *Metrologia* 60.4 (2023) S. Beattie, *et al*, EFTF-IFCS 2023 S. Beattie, *et al*, 9SFSM 2023

Caesium Clocks Accuracy

27

From Microwave to Optical clocks

28

Ion Traps

Wolfgang Paul Hans G. Dehmelt

1989 Nobel Prize in Physics for the development of the ion trap technique

NRC ⁸⁸Sr⁺ POC trap

Ultrastable Lasers and Frequency Combs

John L. Hall Theodor W. Hansch

2012 Nobel Prize in Physics

for their contributions to the development of laserbased precision spectroscopy, including the optical frequency comb technique.

adapted from Margolis H., Chem. Soc. Rev., 41 (2012)

Optical Clocks

David Wineland

2012 Nobel Prize in Physics

for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems

adapted from Oates. C. W. et. al., Optics and Photonics News 26.1 (2015)

Optical clocks - an incomplete list

Species	Transition	Clock transition
⁸⁷ Sr	${}^{1}S_{0} - {}^{3}P_{0}$	698 nm
¹⁷¹ Yb	${}^{1}S_{0} - {}^{3}P_{0}$	578 nm
²⁷ Al+	${}^{1}S_{0} - {}^{3}P_{0}$	267 nm
¹⁰ B ⁺	${}^{1}S_{0} - {}^{3}P_{0}$	268 nm
¹³⁸ Ba ⁺	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	1760 nm
⁴⁰ Ca ⁺	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	729 nm
¹⁹⁹ Hg ⁺	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	282 nm
¹¹⁵ In ⁺		237 nm
¹⁷¹ Yb ⁺	${}^{2}S_{1/2} - {}^{2}F_{7/2}$	467 nm
¹⁷¹ Yb ⁺	${}^{2}S_{1/2} - {}^{2}D_{3/2}$	436 nm
⁸⁸ Sr ⁺	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	674 nm

 Yb^+ @ PTB

Hg⁺ @ NIST

 Sr^+ @ NPL

Sr⁺ @ NRC

Ca⁺ @ Innsbruck

NATIONAL RESEARCH COUNCIL CANADA

adapted from P. Dubé course on Ion Optical Clocks, 2015

NRC Sr+ ion Uncertainty Budget

Effect	Uncertainty $[1 \times 10^{-18}]$	Uncertainty $[1 \times 10^{-18}]$
BBR	11	11
Gravitational redshift	2.0	2.6
Collisional shift (with background gas)	2.0	2.6
AC Stark shift	2.0	0.07
Micromotion shifts	0.1	0.2
Doppler Shift (2 nd order, thermal)	0.8	0.8
AOM frequency error	10	0.2
Total	15	11.7
Link uncertainty	1700	432
year	2017	2023

P. Dube, *et al*, *Metrologia* 54.3 (2017) B. Jian, *et al*, *Metrologia* 60.1 (2023)

NATIONAL RESEARCH COUNCIL CANADA

Optical Clocks Accuracy

34

TIME AND FREQUENCY TRANSFER

Clocks Comparisons – in the laboratory

Time Interval Counter and Phase Comparator

Time Interval Counter

- Time offset measurements
- Frequency offset measurements

Phase Comparator

Phase Comparator

 f_1

IIme

Clocks Comparisons – between the laboratories

Clocks Comparisons – between the laboratories

GNSS: Global Navigation Satellite Systems

Clock Comparisons Techniques

Link type	Typical Uncertainty
Global Navigation Satellite System	$1 \times 10^{-15} / T[d]$
Two Way Satellite Time and Frequency Transfer	1×10^{-17} @ 100s d
Optical Fiber Links	$< 1 \times 10^{-18}$
Transportable Clocks	1×10^{-17}
Free Space Optical Links	1×10^{-18} @ 5 min
Optical Satellite Links	1×10^{-18} @ 5 min

Two Way Satellite Time and Frequency Transfer

П.

Status of the TWSTFT Networks (as of May 2017)

EUR/USA

Telstar 11N

Europe: AOS, CH (METAS), IPQ*,

SP (RISE), TIM (TimeTech)*, VSL

USA: NIST, USNO

IT (INRIM), LTFB*, NPL, OCA*, OP,

PTB, PTF1 (ESA)*, PTF2 (ESA)*, ROA,

CCTF WG-TWSTF Report, May 2017

* TWSTFT stations not contributing to TAI/UTC

ASIA/EUR

Express AM22

Europe: IPQ*, GUM,

NTSC, KM (VNIIFTRI)*

PTB, SU (VNIIFTRI)

Asia: KRISS, NIM,

Figure 1. Summary of the regional and inter-continental TWSTFT networks.

ASIA/ASIA

Eutelsat 172A

Asia: KRISS, NICT,

domestic stations*

TL, 3 Japanese

Free Space Optical Time and Frequency Transfer

Yu-Xiang Cheng, et. al., Opt. Express 32, (2024) Time transfer over 113 km free space laser communication channel Caldwell, E.D., et al. Nature 618, (2023) Quantum-limited optical time transfer for future geosynchronous links

46

NATIONAL RESEARCH COUNCIL CANADA

Fibre Time and Frequency Transfer

https://www.netnod.se/sites/default/files/2023-03/Nr.6_Sven-Christian%20Ebenhag.pdf

Transportable clocks (Frequency Comparisons)

PTB Sr Lattice Clock

RIKEN Sr Lattice Clock (x2)

NATIONAL RESEARCH COUNCIL CANADA

http://projects.npl.co.uk/itoc/assets/images/image.jpg

TIME SCALES

Time Scales

Time Scale Algorithms

Clock model:

$$x(t) = x_0 + y_0(t - t_0) + \frac{1}{2}d_0(t - t_0)^2 + \varepsilon$$

Y. Liu, et al, IEEE TIM, vol. 71, 2022

UTC(k) Time Scale Requirements

- Best noise performance better than 1 individual clock
- Reliability continuously running
- Redundancy resilience to equipment failure
- AC/DC Power stability
- Network availability
- Geographical distribution

.

. . .

Timescales around the world

Colombia C. Rodriguez, CCTF TE 22-05-2024

India A. Agrawal, CCTF TE 22-05-2024

Uzbekistan V. Nishonov, CCTF TE 22-05-2024

https://www.bipm.org/en/committees/cc/cctf/wg/cctf-wgtai/2024-05-22

BIPM Resources

BIPM e-Learning Platform

WG TAI meetings archive

Working	Meetings of the CCTF-WG	TAI
Groups	PAST MEETING	PAST MEETING
Select	CCTF Technical Exchange 22	CCTF Technical Exchange 15
View	MY WG IAI and MY WG IAI and MY WG IAI and WY LALGO: Case Studies from 2024 UTC laboratories A MY MY MY LA ⊖ CCTI-MCTAI	WG ALGO: The fundamentals of 2024 getting started as a UTC contributor
	PAST MEETING	H PAST MEETING
	CCTF-WGTAI meeting and technical exchange on "NTP" 2023	CCTF-WGTAI 18 4-101 2023
	😤 PATRIZIA TAVILLA 😑 CCTF-WIGTAI	🕺 PATRIZIA TAVELLA 🧓 CCTF-WGTAI
	💾 PAST MEETING	
	CCTF-WGTAI 20 SEPTEMBER 2022	CCTF-WGTAI meeting and H technical exchange on "UTC DIRE data validation and 2021
	Real Patrizia tavella 😑 CCTF-WGTAI	monitoring"
	PAST MEETING	PAST MEETING
	CCTF-WGTAI 67 JUNE 2017	Task Group on Time Scale 28 Definition SEPTEMBER 2016
	2017	2010

CCTF & BIPM

Coordinated Universal Time (UTC), is the international reference time scale that forms the basis for the coordinated dissemination of standard frequencies and time signals

Coordinated Universal Time (UTC), is the international reference time scale that forms the basis for the coordinated dissemination of standard frequencies and time signals

Coordinated Universal Time (UTC), is the international reference time scale that forms the basis for the coordinated dissemination of standard frequencies and time signals

UTC(k) Calibration

SIM: G1: NIST, USNO New: SIM traveling system

https://www.bipm.org/kcdb/

Circular T

https://webtai.bipm.org/ftp/pub/tai/Circular-T/cirthtm/cirt.437.html

CIRCULAR T 437 2024 JUNE 10, 16h UTC ISSN 1143-1393

 $\mathbf{\Lambda}$

BUREAU INTERNATIONAL DES POIDS ET MESURES THE INTERGOVERNMENTAL ORGANIZATION ESTABLISHED BY THE METRE CONVENTION PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 tai@bipm.org

The contents of the sections of BIPM Circular T are fully described in the document "Explanatory supplement to BIPM Circular T" available at https://webtai.bipm.org/ftp/pub/tai/other-products/notes/explanatory_supplement_v0.7.pdf

1 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1, 0h UTC, TAI-UTC = 37 s.

Date 2024 Oh UTC MJD Laboratory k	APR 29 60429	MAY 4 60434	MAY 9 60439	MAY 14 60444 [UTC-UTC(I	MAY 19 60449 <)]/ns	MAY 24 60454	MAY 29 60459	Uncer uA	uB	y/ns Notes u
AGGO (La Plata)	693.8	697.1	677.3	685.1	659.0	645.8	633.3	0.7	2.9	3.0
AOS (Borowiec)	-20.0	-20.9	-22.8	-24.7	-26.4	-27.5	-27.3	0.2	3.4	3.4
APL (Laurel)	-0.4	0.4	1.6	3.0	1.2	0.7	-0.2	0.2	NC	-
AUS (Sydney)	-243.6	-238.0	-233.9	-203.4	-203.0	-190.2	-173.6	0.2	2.9	2.9

NC – Not Calibrated

UTC(NRC)

NATIONAL RESEARCH COUNCIL CANADA

SIM TIME NETWORK

SIM Time Network

staring in 2005...

https://sim.nist.gov/scripts/sim_rx_grid.exe

SIMTN

- data updated every 10 minutes
- CGGTTS data format available for BIPM submissions
- new system with dual frequency receiver is under development at NIST

SIMTN

SIMT(NRC) versus SIMT(INM) via Common-View GPS

1 Day Averages	1 Hour Averages	10 Minute Averages		Next Date	Last Date	e <u>Flip</u>
Laboratory 1	National Research Council	ID Number	008	End Date		2024-07-09
Latitude	45° 27 min 14.853 s N	Counter Delay	0.53 ns	Reference Source		SIMT(NRC)
Longitude	75° 37 min 25.777 s W	REF Delay	38 ns	Mask Angle		10°
Altitude	82.59 m	Receiver Delay	229.3 ns	Receiver Temp.		34 °C
Laboratory 2	Instituto Nacional de Metrologia (INM)	ID Number	012	Baseline		4430.241 km
Latitude	4° 38 min 34.643 s N	Counter Delay	0.24 ns	Reference Source		SIMT(INM)
Longitude	74° 5 min 32.593 s W	REF Delay	60.9 ns	Mask Angle		10°
Altitude	2611.11 m	Receiver Delay	128.2 ns	Receiver Temp.		27 °C

Hours in Common-View	Mean Time Offset (ns)	Range (ns)	Frequency Offset	Confidence (r)
3509	-146.81	129.23	-2.90 x 10 ⁻¹⁵	-0.46

SIMT(NRC) - SIMT(INM)

https://tf.nist.gov/sim/index.htm

SIM Time and Frequency Metrology Working Group

Select a Menu Item
Home
CMCs
Comparisons
Meetings
Publications
SIM Time Network (USA)
SIM Time Network (Mexico)
SIM Time Network (Canada)
SIM Time Scale (USA)
SIM Time Scale (Mexico)
SIM Time Scale (Canada)
SIM NTP Comparisons
SIMT/UTC/TAI/GPS Clock
Video of 2016 Leap Second
Related Web Sites
SIM Web Site
OAS Web Site
BIPM Web Site
TIME.IS Web Site
Time and Frequency Groups
CENAM
NIST
NRC
ONRJ
National Web Clocks (SIM region)
Argentina
Bolivia

Welcome

Welcome to the home of the Time and Frequency Metrology Working Group (TFMWG) of the Sistema Interamericano de Metrologia (SIM). The SIM region covers North, Central, and South America, and the Caribbean Islands. The members of the SIM TFMWG are timing laboratories located at national metrology institutes and other designated institutions in the 34 member nations of the Organization of American States (OAS). In most cases, these timing laboratories are responsible for keeping the official time in their respective nations.

SIM Time (SIMT)	2024/07/09 20:17:34
Coordinated Universal Time (UTC)	2024/07/09 20:17:34
Local Time	2024/07/09 16:17:34
This Device's Clock	2024/07/09 16:17:34
Device Clock Compared to Local SIMT	0.182 s slow

To support time and frequency metrology throughout the Americas, the SIM TFMWG maintains the SIM time scale (SIMT), the first continuously maintained multi-national ensemble time scale that is generated and published in real time (updated every hour), SIMT complements the world's official time scale, Coordinated Universal Time (UTC), by providing real time support to operational timing and calibration systems in the SIM region. The stability of SIMT is superior to most SIM local time scales and SIMT also provides a good approximation of UTC timing accuracy (±15 ns). The clock above displays SIMT, UTC, and your local time. It also shows the difference between local SIMT and the clock in the device you are using to view this site.

CCTF WORKING GROUPS

CCTF Structure

CCTF established in 1956 (before 1997 called CCDS)

LEAP SECONDS

UTC is obtained from International Atomic Time (TAI) by the insertion of leap seconds according to the advice of the International Earth Rotation and Reference Systems Service (IERS) to ensure approximate agreement with the time derived from the rotation of the Earth.

Need for Continuous UTC

- proliferation of alternative timescales
- possible negative leap second

NATIONAL RESEARCH COUNCIL CANADA

P. Tavella, CPEM, 2022

Continuous UTC and the future of UT1-UTC

- 26th CGPM (2022) Resolution 2: "On the definition of time scales"
 - https://www.bipm.org/en/committees/cg/cgpm/26-2018/resolution-2
 - confirms UTC is a time scale produced by the BIPM with the same rate as TAI, but differing from TAI only by an integral number of seconds,
 - recommends that all relevant unions and organizations work together to develop a common understanding
- 2020: the BIPM and ITU-R signed an MoU for mutual assistance
 - to the ITU-R in its role to set standards concerning time signals and frequency standard emissions, protocols, and dissemination procedure,
 - to the BIPM in its role of defining and realizing measurement standards and reference time-scales
- 27th CGPM (2022) Resolution 4: "On the use and future development of Coordinated Universal Time (UTC)"
 - <u>https://www.bipm.org/en/cgpm-2022/resolution-4</u>
 - Decides that the maximum value for the difference (UT1-UTC) will be increased in, or before, 2035
- 2023: ITU WRC endorsed the CGPM 2022 resolution

Next Steps

- Define **new tolerance** for UT1-UTC
 - 100 s, 1 h, 1 d, ...
- Define new rules for applying "leap offset"
 - Phase step, frequency slew, regular or on demand, ...
- Define implementation date for the new rules
 - 2025, 2030, 2035,...

TG **Leap seconds** in UTC and building a consensus for a continuous timescale

REDEFINITION OF THE SECOND

Optical Clocks Accuracy

CGPM 2022 Resolution 5 - On the future redefinition of the second

encourages the International Committee for Weights and Measures (CIPM)

- to promote the importance of achieving the objectives in the roadmap for the redefinition of the second,
- to bring proposals to the 28th meeting of the CGPM (2026) for the choice of the preferred species, or ensemble of species for a new definition of the second, and for the further steps that must be taken for a new definition to be adopted at the 29th meeting of the CGPM (2030),

and **invites** Member States to support research activities, and the development of national and international infrastructures, to allow progress towards the adoption of a new definition of the second.

TG Roadmap towards the **redefinition of the second**

https://www.bipm.org/documents/20126/64811223/Resolutions-2022.pdf

CCTF: Roadmap towards a redefinition of the second

N Dimarcq et al 2024 Metrologia 61 012001

	Mandatory criteria	Ancillary conditions	Criteria and conditions
Frequency standards,	Х		I.1—Accuracy budgets of optical frequency standards
including the	Х		I.2—Validation of Optical Frequency Standard accuracy
contribution of OFS to	Х		budgets—Frequency ratios
time scales	Х		I.3-Continuity with the definition based on Cs
			I.4—Regular contributions of optical frequency standards to TAI (as secondary representations of the second)
		Х	I.5—High reliability of OFS
		X	I.6—Regular contributions of optical frequency standards to $UTC(k)$
TF links for comparison	Х		II.1—Availability of sustainable techniques for Optical Frequency
or dissemination	Х		Standards comparisons
			II.2—Knowledge of the local geopotential with an adequate uncertainty level
		Х	II.3—High reliability of ultra-high stability TF links
Acceptability of the new	Х		III.1—Definition allowing more accurate realizations in the future
definition	Х		III.2-Access to the realization of the new definition
		X X	III-3—Continuous improvement of the realization and of time scales after redefinition III.4—Availability of commercial optical frequency standards
		X	III.5—Improved quality of the dissemination towards users

Table 4. Mandatory criteria and ancillary conditions to ensure the benefit and the acceptability of a new definition.

CCTF Task Force on the Redefinition

SG1	SG2	SG3
Option	Criteria	Education

Task Force on Updating the Roadmap for the redefinition of second

Progressing towards the redefinition of the second

TECHNICAL/SCIENTIFIC

LIAISON

With the advent of optical frequency standards, which are systematically achieving uncertainties below those of caesium fountain primary standards, the redefinition of the second, based on optical transitions, is being considered by the Consultative Committee for Time and Frequency (CCTF). Candidate species (¹⁷¹Yb, ⁸⁷Sr) developed by metrology laboratories and research institutes are already being regularly reported to the DIPM, contributing to International Atomic Time (TAI) as secondary representations of the second access and the second in the future. Progress over the last 10 years is instilling growing confidence within the TF community that the adoption of a new definition will occur within the next decade or soon thereafter. Further improvements in the operational aspects of clocks (stability, uncertainty, robustness) and TF transfer and comparison techniques present opportunities to accelerate the timeline towards the redefinition.

The CCTF established a task force in charge of updating the roadmap for the redefinition in 2020. An essential part of this global coordination involves providing the community with fundamental information about all aspects of the change, including its drivers, impact and remaining challenges.

A recently published *Metrologic* open access review article describes the outputs of the work carried out by the task force. A dedicated BIPM webpage gives complementary information addressing frequently asked questions about the redefinition.

Redefining the SI second will improve the quality of the mise en protique, thereby supporting continued scientific and technological progress. The adoption of the redefinition by the General Conference on Weights and Measures, the CGPM, is anticipated in 2030 or later, depending on the fulfilment of the mandatory criteria detailed in the CCTF roadmap.

Q

PUBLICATIONS & EVENTS

CCTF Task Force on the Redefinition – SG1

	Option 1	Option 2	Option 3
SG1	choosing <mark>one single atomic transition in lieu of the Cs</mark> hyperfine transition and to fix the numerical value of the frequency of this	consists of creating a defining constant based on several transitions rather than just a single one, as described in. The quantity whose	consists in <mark>fixing the numerical value of one more fundamental constant</mark> , in addition to <i>c</i> , <i>h and e</i> . From the fundamental standpoint, a
Option	transition $v_{\rm Xy}$ $v_{\rm Xy}=N$ Hz, where N is the defining value.	numerical value is used in the definition is a weighted geometrical mean of the frequency of an ensemble of chosen transitions. The unit of time is set by the relation: $\prod_i v_i^{w_i} = N \text{ Hz}, \text{ where } w_i \text{ and } N \text{ are the}$	good choice for this constant is the electron mass m_e , in which case the system of unit is set by the relations: $m_e=M$ kg, where M is the defining value, completed by the other defining relations for c ,
		J. Lodewyck. Metrologia 56 (2019)	h, e, k_B, N_A and K_{cd} .
	$v_{\mathrm{Xy}} = N$ Hz	$\prod_{i} v_i^{w_i} = N \text{ Hz}$	$m_{ m e}=M~{ m kg}$
	 Familiar and practical Uncertainty lower × 10² than for the current definition with Cs The new definition might rapidly become obsolete 	 Uncertainty lower × 10² than for the current definition with Cs Flexible scheme Conceptual deviation from the principle of applying fixed defining constants for the SI units 	 Consistent with other SI units Uncertainty higher × 10⁴ than for the current definition with Cs N Dimarcg et al 2024 Metrologia 61 012001
NATIONAL RESEAR	C	· · · · · ·	,

CCTF Task Force on the Redefinition – SG2

N Dimarcq et al 2024 Metrologia 61 012001

Figure 5. Fulfilment levels of mandatory criteria in 2022.

CCTF Task Force on the Redefinition – SG3

Education

FAQ – Frequency Asked Questions:

- What is the timeline for redefinition?
- Why does the community want to redefine the second?
- What are the options to redefine the second?
- What will happen to the caesium standards after the redefinition?
- What actions might I need to take prior to the redefinition?
- Will I need to replace my caesium standards after the redefinition?
- Will caesium standards still be accepted into UTC after the redefinition?
- What are the criteria for deciding if we are ready for the redefinition?

Roadmap to the redefinition of the second

The CCTF is currently working towards an update of the definition of the second, in accordance with the significant improvements in atomic clock designs that have occured in the recent years.

This web page collates some of the general and publicly accessible information associated with the process.

The time and frequency community is highly engaged in the long journey that will eventually lead to the redefinition of the second, possibly in 2030. We will update and add content to this page in the coming years. Please revisit this page regularly to stay up to date.

Frequently Asked Questions concerning the Redefinition of the Second

CCTF Task Force on Updating the Roadmap for the redefinition of the second

Roadmap towards the redefinition of the second Metrologia (2024) 61 012001 Noël Dimarcq et al.

https://www.bipm.org/en/redefinition-second

UTC(K) DISSEMINATION

UTC(k) Dissemination methods

Have redundancy!

Calibration Capabilities

https://www.bipm.org/kcdb/cmc/quick-search

ω	CMCS	COMPARISONS	NEWS	STATISTICS
Home > CMC search				
Results for: Search O results Broot all	Q 3	CMC ADVANCED SEARCH		
				_

Note: Only the second sub-level items presented as "a.b.c", where "a", "b", and "c" are integers, should be selected for the column "Service category" (for instance "1.1.1") and "Instrument or Artifact" (for instance "Local clock vs. UTC(NMI)") of the CMC table.

NATIONAL RESEARCH COUNCIL CANADA

CONCLUSION

SI Second

87

Accurate Time for the functioning of our lives

Power grids Telecommunications Finance Transportation Agriculture Manufacturing Scientific research

. . .

https://www.space.com/time-how-it-works

National Research Conseil national de council Canada recherches Canada

Thank You

Marina Gertsvolf

National Research Council Canada (NRC)

Marina.Gertsvolf@nrc-cnrc.gc.ca

• • • • • • • • • • • • • •

SIM METROLOGY SCHOOL

Follow us on:

facebook.com/metrosim youtube.com/simmetrology7958 www.sim-metrología.org

