OPTICAL 3D MEASURING SYSTEMS
- Dimensional traceability for industrial and medical applications

Bruno Gastaldi
INTI
MOTIVATION OF THE PROJECT

The role of metrology is changing: *final inspection is becoming less important*
MOTIVATION OF THE PROJECT

The change from measurement as a quality control tool to a fully integrated step in the production process
MOTIVATION OF THE PROJECT

The industrial manufacturing processes are changing: 3D printing / adaptive manufacturing technologies
MOTIVATION OF THE PROJECT

Measuring systems are now able to measure and adapt its measurement process in real-time

Note: Images from GOM Web page
MOTIVATION OF THE PROJECT

Increasing use of optical 3D metrology in multiple applications:

- Automotive industry
- Aerospace industry
- Medical Research
- Power Generation
PREVIOUS COLLABORATIONS

Cenam, Inmetro, Inacal and Inti were members of the project “IADB SIM Research Engagement Opportunity”

Project: Calibration of standard reference material for use in calibrating the magnification or scale of optical microscopy and scanning electron microscopy.
OPTICAL 3D MEASURING SYSTEMS PROJECT

NMIs Participants:

- Cenam (Mexico)
- Inmetro (Brasil)
- Ibmetro (Bolivia)
- Dictuc (Chile)
- Inti (Argentina)
OPTICAL 3D MEASURING SYSTEMS PROJECT

NMIs precondition

Experience in traditional metrology: contact metrology

Relationship with companies that use optical 3D metrology

The NMIs does not have 3D optical measurement equipment
OPTICAL 3D MEASURING SYSTEMS PROJECT

The general objective:

Study of optical 3D measuring systems

Key objectives:

1- Study of traceability and the standards or guidelines used
2- Patterns required for performance evaluation according to standards or guidelines
3- Study of typical sources of errors
4- Working groups with companies that use optical 3D metrology
5 - Development of special patterns for specific applications
OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 1: study of traceability and the standards or guidelines used

Procedures of 3D optical measuring systems according to the existing guidelines:

VDI/VDE 2634: Part 1 for point by point probing / Part 2 for optical systems based on area scanning / Part 3 for multiple view systems based on area scanning
OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 1: study of traceability and the standards or guidelines used

Procedures of 3D optical measuring systems according to the existing guidelines:

OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 2: artifacts required for performance evaluation according to the standards or guidelines
OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 3: study of typical sources of errors

Manufacturer artifact calibration
3D instrument adjustment with the artifact provided by the manufacturer
Ambient light
Target reflectivity
Instrument orientations

Note: Images from Performance evaluation of a portable 3D imaging system publication from NRC
OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 4: working groups with companies that use optical 3D metrology
OPTICAL 3D MEASURING SYSTEMS PROJECT

Key objective 5: development of special artifacts for specific applications

Notes:
(a) NPL freeform artifact (b) Image from EMRP JRP IND62 –TIM: Use of on-board metrology systems for area-scanning on machine tools (c) Image from Artefact for optical surface measurement publication from NRC
OPTICAL 3D MEASURING SYSTEMS PROJECT

Time schedule

<table>
<thead>
<tr>
<th>Activity / Deliverable</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>Kickoff:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uploading brief description of equipment and infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>related to the project from each institute. Start of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>technical communication and exchange via internet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of the research project:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop performance evaluation procedures of 3D optical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>measuring systems according to the existing guidelines,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDI/VDE 2634.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase of required standards / acquisitions of patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for pilot study.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Meeting at one of the NMIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes of the Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of the research project:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of sources of errors in industrial and medical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>applications / Working groups with companies / Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of special patterns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adquisitions of patterns for pilot study / Pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>circulation between NMIs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Meeting at one of the NMIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes of the Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final draft of international publication.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report submission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Distribution of all deliverables to SIM members via</td>
<td></td>
<td></td>
</tr>
<tr>
<td>internet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPTICAL 3D MEASURING SYSTEMS PROJECT

Questions with the aim to strengthen the R&D project

1- Do you know if the optical 3D technology traceability chain is adequate?
(Manufacturer / NMI / Accredited laboratory)

2- What do you consider to be more relevant?
 - Development of procedures in accordance with existing guidelines
 - Development of special patterns for specific applications
¡THANKS!

!MUCHAS GRACIAS!