Metrological evaluation of lung ultrasound using virtual vector machine for diagnosis of acute respiratory distress syndrome

Rodrigo Costa-Felix
INMETRO
Participating NMI and team

• Project coordinator
 • Rodrigo Costa-Felix Inmetro (Brasil)

• NMI contacts
 • Ana Lilia Lopez Sanchez Cenam (Mexico)
 • David A. Sheen NIST (USA)
 • Fabián Acquaticci INTI (Argentina)

• Researchers
 • Andre V. Alvarenga Inmetro (Brasil)
 • Andrés E.P. Matzumoto Cenam (Mexico)
 • Fernando Konrblit INTI (Argentina)
 • Hugo E.G. Hernández Cenam (Mexico)
 • Iris Mariela L. Bautista Cenam (Mexico)
 • Noé Vidal Medina Cenam (Mexico)
 • Werickson F. Rocha Inmetro (Brasil)
Main concepts

- Lung ultrasound (LUS)
 - Ultrasonography of lungs

- LUS “scores” (LUSS)
 - Semiquantitative score that measures lung aeration loss caused by different pathological conditions (ARDS, for instance)
• Acute Respiratory Distress Syndrome (ARDS)
 • ARDS happens when the lungs become severely inflamed from an infection or injury
 • The inflammation causes fluid from nearby blood vessels to leak into the tiny air sacs in your lungs, making breathing increasingly difficult
 • COVID-19 may lead to ARDS in some circumstances

Radiography, not LUS
• Virtual Vector Machine (VVM)
 • Supervised learning models with associated learning algorithms that analyze data for classification and regression analysis
 • VVM ⊆ Machine Learning ⊆ Artificial Intelligence
LUS is widely available

- Easy to be used
 - Professional certification may be required
- Relatively low cost
 - Comparing with radiology, for instance
- Non-ionizing radiation
 - Proper dose measurement for IR is available
- Accessible as Point of Care Testing (POCT)
 - Easy to be used, low cost, and non-ionizing

LUS has been successfully used to COVID-19 diagnosis

- A thousand or more papers had been published recently
 - A systematic review is undergoing
 - Cooperation of Inmetro and the Federal University of Rio de Janeiro (UFRJ)
• Is LUS safe for ARDS diagnosis?
 • That is partially responded by the project motivation

• Is LUS a proper metrological tool for ARDS diagnosis?
 • To be confirmed by the project outcomes

• Can VVM improve the rapidness for ARDS diagnosis?
 • Diagnostics accuracy is a premise
 • A comparison between a human and a VVM analysis is part of the methodology
Challenges

• Metrology
 • LUS images accuracy to be checked
 • VVM accuracy to be checked

• Technology
 • LUS as ARDS reliable diagnostics tool to be checked

• Methodology
 • Available LUS images databases completeness to be checked
Objectives

• Main objective
 • Find out the applicability of VVM to help on the Diagnostics of ARDS (DARDS) based on LUS images

• Complementary objectives
 • To find and check out LUS databases for ARDS
 • To retrieve a large amount of data regarding LUS and ARDS
 • To develop a VVM to categorize different LUSS based on LUS images
 • To propose a tool to Diagnose Acute Respiratory Syndrome (DARDS) based on VVM

That is the utmost objective: DARDS
Material and Methods

• Search for databases
 • LUS applicable to ARDS diagnosis

• Evaluate the integrity and reliability of the databases
 • Equipment used to extract the images
 • Post-extraction treatment

• Develop a VVM to categorize LUS images with respect to DARDS
 • Supervised tests
 • Accuracy check
Main outcomes

• An automated tool to diagnose ARDS based on different LUS scores
 • Technologically validated
 • Metrologically validated
 • Free to use worldwide
 • Industrial and Intellectual properties to be well-adjusted throughout the project

• Spread out knowledge of LUS, ARDS, VVM among SIM’s NMI
 • Technical exchange
 • Internships
 • Culturalization on M4DT regarding ultrasound usefulness

MUCH MORE TO BE EXPLOITED
Expected impacts

• Better, faster and more accurate diagnostics for ARDS
 • Based on a technical development project

• Easiness to apply the tool
 • M4DT as a dip-needle to forthcoming entrepreneurship on metrology
 agreed value investments

• POCT viability with an additional value on metrology
 • Metrology showing up as useful for a broader audience

• Health care and health tech investments
 • Circular and globally economy improvement

• Better communication with the population regarding the metrology
Time schedule

- Warming up the engines
 - 14OCT2021
 - Kick-off meeting
 - 27OCT2021
 - Interaction and first planning

- Forthcoming activities
 - 5 internships
 - To be arranged
 - Expected to be held from APR2022 to MAY2023

- Final meeting
 - Expected to be held on JUN-AUG2023

- Projected time span
 - OCT2021 to SEP2023 (24 months)
Digital data storage in the clouds for 18 months
 • USD 2k

Scientist’s exchange
 • USD 20k
 • Travelling support for 5 researchers
 • Air ticket and day allowance
 • Up to 4 weeks each

Final meeting
 • USD 12k
 • Travelling support for 6 researchers
 • Air ticket and day allowance
 • Up to 4 days each

Total: USD 34 k
Metrological evaluation of lung ultrasound using virtual vector machine for diagnosis of acute respiratory distress syndrome

Rodrigo Costa-Felix
INMETRO
rpfelix@inmetro.gov.br